Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effect of Cerium Doping in the TiO2 Photoanode on the Electron Transport of Dye-Sensitized Solar Cells

Identifieur interne : 000583 ( Chine/Analysis ); précédent : 000582; suivant : 000584

Effect of Cerium Doping in the TiO2 Photoanode on the Electron Transport of Dye-Sensitized Solar Cells

Auteurs : RBID : Pascal:12-0403778

Descripteurs français

English descriptors

Abstract

Rare earth element cerium (Ce) with variable valence states Ce4+/Ce3+ is doped in the TiO2 photoanode for dye-sensitized solar cells (DSSCs). The anatase crystalline phase keeps unchanged, while the crystalline size decreases slightly after Ce doping. The Ce positively changes the conduction band minimum of TiO2 due to the unoccupied Ce-4f trap states in the band gap, and the Ce4+ is reduced to Ce3+ when electrons are injected in the photoanode. The cerium-doped photoanodes with special electrochemical properties severely influence the performance of DSSCs. Due to the increased electron injection, the small Ce content (0.05% and 0.1%) doped TiO2 photoanodes improve the performance of DSSCs which is optimized to 7.65% with Ce0.1% doping (1 sun, AM1.5) compared with the one with a pure TiO2 photoanode (7.2%). However, the Ce4+ states effectively trap electrons in the photoanode with further increase of Ce from 0.3 to 0.9%, which is confirmed by the charge extraction method and electrochemical impedance spectroscopy (EIS); thus, it suppresses the photocurrent and the efficiency of the DSSCs but is helpful to the fill factor improvement. The trap states, mainly resting on the TiO2 crystalline surface, are verified and effectively passivized by TiCl4 surface treatment.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0403778

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Effect of Cerium Doping in the TiO
<sub>2</sub>
Photoanode on the Electron Transport of Dye-Sensitized Solar Cells</title>
<author>
<name>JING ZHANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Photovoltaics Materials Unit, National Institute for Materials Science</s1>
<s2>Tsukuba, Ibaraki, 305-0047</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Tsukuba, Ibaraki, 305-0047</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Physics, Ningbo University</s1>
<s2>315211, Zhejiang</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>315211, Zhejiang</wicri:noRegion>
</affiliation>
</author>
<author>
<name>WENQIN PENG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Photovoltaics Materials Unit, National Institute for Materials Science</s1>
<s2>Tsukuba, Ibaraki, 305-0047</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Tsukuba, Ibaraki, 305-0047</wicri:noRegion>
</affiliation>
</author>
<author>
<name>ZHENHUA CHEN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Photovoltaics Materials Unit, National Institute for Materials Science</s1>
<s2>Tsukuba, Ibaraki, 305-0047</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Tsukuba, Ibaraki, 305-0047</wicri:noRegion>
</affiliation>
</author>
<author>
<name>HAN CHEN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>State Key Laboratory of Metal Matrix Composites, Shanghai Jiaotong University</s1>
<s2>Shanghai 200240</s2>
<s3>CHN</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200240</wicri:noRegion>
</affiliation>
</author>
<author>
<name>LIYUAN HAN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Photovoltaics Materials Unit, National Institute for Materials Science</s1>
<s2>Tsukuba, Ibaraki, 305-0047</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Tsukuba, Ibaraki, 305-0047</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>State Key Laboratory of Metal Matrix Composites, Shanghai Jiaotong University</s1>
<s2>Shanghai 200240</s2>
<s3>CHN</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200240</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0403778</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0403778 INIST</idno>
<idno type="RBID">Pascal:12-0403778</idno>
<idno type="wicri:Area/Main/Corpus">001731</idno>
<idno type="wicri:Area/Main/Repository">001E03</idno>
<idno type="wicri:Area/Chine/Extraction">000583</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1932-7447</idno>
<title level="j" type="abbreviated">J. phys. chem., C</title>
<title level="j" type="main">Journal of physical chemistry. C</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anatase</term>
<term>Cerium additions</term>
<term>Charge carrier injection</term>
<term>Charge carrier trapping</term>
<term>Conduction bands</term>
<term>Crystalline phase</term>
<term>Defect states</term>
<term>Doping</term>
<term>Dye-sensitized solar cell</term>
<term>Electrochemical impedance spectroscopy</term>
<term>Electrochemical method</term>
<term>Electrochemical properties</term>
<term>Electron injection</term>
<term>Electron mobility</term>
<term>Electron state</term>
<term>Electron traps</term>
<term>Electronic conductivity</term>
<term>Electronic properties</term>
<term>Electronic structure</term>
<term>Energy gap</term>
<term>Fill factor</term>
<term>Indium additions</term>
<term>Optimization</term>
<term>Photoconductivity</term>
<term>Photocurrents</term>
<term>Surface treatments</term>
<term>Valence</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Addition indium</term>
<term>Conductivité électronique</term>
<term>Mobilité électron</term>
<term>Valence</term>
<term>Addition cérium</term>
<term>Anatase</term>
<term>Phase cristalline</term>
<term>Bande conduction</term>
<term>Etat défaut</term>
<term>Bande interdite</term>
<term>Propriété électronique</term>
<term>Injection porteur charge</term>
<term>Dopage</term>
<term>Propriété électrochimique</term>
<term>Cellule solaire à colorant</term>
<term>Injection électron</term>
<term>Optimisation</term>
<term>Etat électronique</term>
<term>Structure électronique</term>
<term>Piège électron</term>
<term>Piégeage porteur charge</term>
<term>Méthode électrochimique</term>
<term>Spectroscopie impédance électrochimique</term>
<term>Courant photoélectrique</term>
<term>Photoconductivité</term>
<term>Facteur remplissage</term>
<term>Traitement surface</term>
<term>Substrat TiO2</term>
<term>TiCl4</term>
<term>7363</term>
<term>7321</term>
<term>7322</term>
<term>8460J</term>
</keywords>
<keywords scheme="Wicri" type="geographic" xml:lang="fr">
<term>Valence (Drôme)</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Rare earth element cerium (Ce) with variable valence states Ce
<sup>4+</sup>
/Ce
<sup>3+</sup>
is doped in the TiO
<sub>2</sub>
photoanode for dye-sensitized solar cells (DSSCs). The anatase crystalline phase keeps unchanged, while the crystalline size decreases slightly after Ce doping. The Ce positively changes the conduction band minimum of TiO
<sub>2</sub>
due to the unoccupied Ce-4f trap states in the band gap, and the Ce
<sup>4+</sup>
is reduced to Ce
<sup>3+</sup>
when electrons are injected in the photoanode. The cerium-doped photoanodes with special electrochemical properties severely influence the performance of DSSCs. Due to the increased electron injection, the small Ce content (0.05% and 0.1%) doped TiO
<sub>2</sub>
photoanodes improve the performance of DSSCs which is optimized to 7.65% with Ce0.1% doping (1 sun, AM1.5) compared with the one with a pure TiO
<sub>2</sub>
photoanode (7.2%). However, the Ce
<sup>4+</sup>
states effectively trap electrons in the photoanode with further increase of Ce from 0.3 to 0.9%, which is confirmed by the charge extraction method and electrochemical impedance spectroscopy (EIS); thus, it suppresses the photocurrent and the efficiency of the DSSCs but is helpful to the fill factor improvement. The trap states, mainly resting on the TiO
<sub>2</sub>
crystalline surface, are verified and effectively passivized by TiCl
<sub>4</sub>
surface treatment.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1932-7447</s0>
</fA01>
<fA03 i2="1">
<s0>J. phys. chem., C</s0>
</fA03>
<fA05>
<s2>116</s2>
</fA05>
<fA06>
<s2>36</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Effect of Cerium Doping in the TiO
<sub>2</sub>
Photoanode on the Electron Transport of Dye-Sensitized Solar Cells</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>JING ZHANG</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>WENQIN PENG</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ZHENHUA CHEN</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>HAN CHEN</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>LIYUAN HAN</s1>
</fA11>
<fA14 i1="01">
<s1>Photovoltaics Materials Unit, National Institute for Materials Science</s1>
<s2>Tsukuba, Ibaraki, 305-0047</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Physics, Ningbo University</s1>
<s2>315211, Zhejiang</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>State Key Laboratory of Metal Matrix Composites, Shanghai Jiaotong University</s1>
<s2>Shanghai 200240</s2>
<s3>CHN</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>19182-19190</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>549C</s2>
<s5>354000509501960140</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>38 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0403778</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of physical chemistry. C</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Rare earth element cerium (Ce) with variable valence states Ce
<sup>4+</sup>
/Ce
<sup>3+</sup>
is doped in the TiO
<sub>2</sub>
photoanode for dye-sensitized solar cells (DSSCs). The anatase crystalline phase keeps unchanged, while the crystalline size decreases slightly after Ce doping. The Ce positively changes the conduction band minimum of TiO
<sub>2</sub>
due to the unoccupied Ce-4f trap states in the band gap, and the Ce
<sup>4+</sup>
is reduced to Ce
<sup>3+</sup>
when electrons are injected in the photoanode. The cerium-doped photoanodes with special electrochemical properties severely influence the performance of DSSCs. Due to the increased electron injection, the small Ce content (0.05% and 0.1%) doped TiO
<sub>2</sub>
photoanodes improve the performance of DSSCs which is optimized to 7.65% with Ce0.1% doping (1 sun, AM1.5) compared with the one with a pure TiO
<sub>2</sub>
photoanode (7.2%). However, the Ce
<sup>4+</sup>
states effectively trap electrons in the photoanode with further increase of Ce from 0.3 to 0.9%, which is confirmed by the charge extraction method and electrochemical impedance spectroscopy (EIS); thus, it suppresses the photocurrent and the efficiency of the DSSCs but is helpful to the fill factor improvement. The trap states, mainly resting on the TiO
<sub>2</sub>
crystalline surface, are verified and effectively passivized by TiCl
<sub>4</sub>
surface treatment.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70C63</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70C21</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70C22</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="05" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Addition indium</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Indium additions</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Conductivité électronique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Electronic conductivity</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Conductividad electrónica</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Mobilité électron</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Electron mobility</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Valence</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Valence</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Addition cérium</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Cerium additions</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Anatase</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Anatase</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Anatasa</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Phase cristalline</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Crystalline phase</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Fase cristalina</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Bande conduction</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Conduction bands</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Etat défaut</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Defect states</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Bande interdite</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Energy gap</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Propriété électronique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Electronic properties</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Propiedad electrónica</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Injection porteur charge</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Charge carrier injection</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Inyección portador carga</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Doping</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Doping</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Propriété électrochimique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Electrochemical properties</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Propiedad electroquímica</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Cellule solaire à colorant</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Dye-sensitized solar cell</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Célula solar sensibilizada tinte</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Injection électron</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Electron injection</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Inyección electrón</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Optimisation</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Optimization</s0>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Etat électronique</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Electron state</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Estado electrónico</s0>
<s5>31</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Structure électronique</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Electronic structure</s0>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Piège électron</s0>
<s5>33</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Electron traps</s0>
<s5>33</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Piégeage porteur charge</s0>
<s5>34</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Charge carrier trapping</s0>
<s5>34</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Captura portador carga</s0>
<s5>34</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Méthode électrochimique</s0>
<s5>35</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Electrochemical method</s0>
<s5>35</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Método electroquímico</s0>
<s5>35</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Spectroscopie impédance électrochimique</s0>
<s5>36</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Electrochemical impedance spectroscopy</s0>
<s5>36</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Espectrometría impedancia electroquímica</s0>
<s5>36</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Courant photoélectrique</s0>
<s5>37</s5>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Photocurrents</s0>
<s5>37</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Photoconductivité</s0>
<s5>38</s5>
</fC03>
<fC03 i1="25" i2="3" l="ENG">
<s0>Photoconductivity</s0>
<s5>38</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>Facteur remplissage</s0>
<s5>39</s5>
</fC03>
<fC03 i1="26" i2="3" l="ENG">
<s0>Fill factor</s0>
<s5>39</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>Traitement surface</s0>
<s5>40</s5>
</fC03>
<fC03 i1="27" i2="3" l="ENG">
<s0>Surface treatments</s0>
<s5>40</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>Substrat TiO2</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>TiCl4</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>7363</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="31" i2="3" l="FRE">
<s0>7321</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="32" i2="3" l="FRE">
<s0>7322</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="33" i2="3" l="FRE">
<s0>8460J</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>317</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000583 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000583 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:12-0403778
   |texte=   Effect of Cerium Doping in the TiO2 Photoanode on the Electron Transport of Dye-Sensitized Solar Cells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024